微信扫描登录
或者
请输入您的邮件地址来登录或者创建帐号
提 交取 消
GITBOOK.CN需要您的浏览器打开cookies设置以支持登录功能

Etcd 架构与实现解析
作者:王渊命

前一段时间的项目里用到了 Etcd, 所以研究了一下它的源码以及实现。网上关于 Etcd 的使用介绍的文章不少,但分析具体架构实现的文章不多,同时 Etcd v3的文档也非常稀缺。本文通过分析 Etcd 的架构与实现,了解其优缺点以及瓶颈点,一方面可以学习分布式系统的架构,另外一方面也可以保证在业务中正确使用 Etcd,知其然同时知其所以然,避免误用。最后介绍 Etcd 周边的工具和一些使用注意事项。

阅读对象:分布式系统爱好者,正在或者打算在项目中使用Etcd的开发人员。

Etcd 按照官方介绍

Etcd is a distributed, consistent key-value store for shared configuration and service discovery

是一个分布式的,一致的 key-value 存储,主要用途是共享配置和服务发现。Etcd 已经在很多分布式系统中得到广泛的使用,本文的架构与实现部分主要解答以下问题:

  1. Etcd是如何实现一致性的?
  2. Etcd的存储是如何实现的?
  3. Etcd的watch机制是如何实现的?
  4. Etcd的key过期机制是如何实现的?

为什么需要 Etcd ?

所有的分布式系统,都面临的一个问题是多个节点之间的数据共享问题,这个和团队协作的道理是一样的,成员可以分头干活,但总是需要共享一些必须的信息,比如谁是 leader, 都有哪些成员,依赖任务之间的顺序协调等。所以分布式系统要么自己实现一个可靠的共享存储来同步信息(比如 Elasticsearch ),要么依赖一个可靠的共享存储服务,而 Etcd 就是这样一个服务。

Etcd 提供什么能力?

Etcd 主要提供以下能力,已经熟悉 Etcd 的读者可以略过本段。

  1. 提供存储以及获取数据的接口,它通过协议保证 Etcd 集群中的多个节点数据的强一致性。用于存储元信息以及共享配置。
  2. 提供监听机制,客户端可以监听某个key或者某些key的变更(v2和v3的机制不同,参看后面文章)。用于监听和推送变更。
  3. 提供key的过期以及续约机制,客户端通过定时刷新来实现续约(v2和v3的实现机制也不一样)。用于集群监控以及服务注册发现。
  4. 提供原子的CAS(Compare-and-Swap)和 CAD(Compare-and-Delete)支持(v2通过接口参数实现,v3通过批量事务实现)。用于分布式锁以及leader选举。

更详细的使用场景不在这里描述,有兴趣的可以参看文末infoq的一篇文章。

Etcd 如何实现一致性的?

说到这个就不得不说起raft协议。但这篇文章不是专门分析raft的,篇幅所限,不能详细分析,有兴趣的建议看文末原始论文地址以及raft协议的一个动画。便于看后面的文章,我这里简单做个总结:

  1. raft通过对不同的场景(选主,日志复制)设计不同的机制,虽然降低了通用性(相对paxos),但同时也降低了复杂度,便于理解和实现。
  2. raft内置的选主协议是给自己用的,用于选出主节点,理解raft的选主机制的关键在于理解raft的时钟周期以及超时机制。
  3. 理解 Etcd 的数据同步的关键在于理解raft的日志同步机制。

Etcd 实现raft的时候,充分利用了go语言CSP并发模型和chan的魔法,想更进行一步了解的可以去看源码,这里只简单分析下它的wal日志。

enter image description here

wal日志是二进制的,解析出来后是以上数据结构LogEntry。其中第一个字段type,只有两种,一种是0表示Normal,1表示ConfChange(ConfChange表示 Etcd 本身的配置变更同步,比如有新的节点加入等)。第二个字段是term,每个term代表一个主节点的任期,每次主节点变更term就会变化。第三个字段是index,这个序号是严格有序递增的,代表变更序号。第四个字段是二进制的data,将raft request对象的pb结构整个保存下。Etcd 源码下有个tools/etcd-dump-logs,可以将wal日志dump成文本查看,可以协助分析raft协议。

raft协议本身不关心应用数据,也就是data中的部分,一致性都通过同步wal日志来实现,每个节点将从主节点收到的data apply到本地的存储,raft只关心日志的同步状态,如果本地存储实现的有bug,比如没有正确的将data apply到本地,也可能会导致数据不一致。

Etcd v2 与 v3

Etcd v2 和 v3 本质上是共享同一套 raft 协议代码的两个独立的应用,接口不一样,存储不一样,数据互相隔离。也就是说如果从 Etcd v2 升级到 Etcd v3,原来v2 的数据还是只能用 v2 的接口访问,v3 的接口创建的数据也只能访问通过 v3 的接口访问。所以我们按照 v2 和 v3 分别分析。

Etcd v2 的存储、whach和过期机制

enter image description here Etcd v2 是个纯内存的实现,并未实时将数据写入到磁盘,持久化机制很简单,就是将store整合序列化成json写入文件。数据在内存中是一个简单的树结构。比如以下数据存储到 Etcd 中的结构就如图所示。

/nodes/1/name  node1
/nodes/1/ip    192.168.1.1 

store中有一个全局的currentIndex,每次变更,index会加1.然后每个event都会关联到currentIndex.

当客户端调用watch接口(参数中增加 wait参数)时,如果请求参数中有waitIndex,并且waitIndex 小于 currentIndex,则从 EventHistroy 表中查询index小于等于waitIndex,并且和watch key 匹配的 event,如果有数据,则直接返回。如果历史表中没有或者请求没有带 waitIndex,则放入WatchHub中,每个key会关联一个watcher列表。 当有变更操作时,变更生成的event会放入EventHistroy表中,同时通知和该key相关的watcher。

这里有几个影响使用的细节问题:

  1. EventHistroy 是有长度限制的,最长1000。也就是说,如果你的客户端停了许久,然后重新watch的时候,可能和该waitIndex相关的event已经被淘汰了,这种情况下会丢失变更。
  2. 如果通知watch的时候,出现了阻塞(每个watch的channel有100个缓冲空间),Etcd 会直接把watcher删除,也就是会导致wait请求的连接中断,客户端需要重新连接。
  3. Etcd store的每个node中都保存了过期时间,通过定时机制进行清理。

从而可以看出,Etcd v2 的一些限制:

  1. 过期时间只能设置到每个key上,如果多个key要保证生命周期一致则比较困难。
  2. watch只能watch某一个key以及其子节点(通过参数 recursive),不能进行多个watch。
  3. 很难通过watch机制来实现完整的数据同步(有丢失变更的风险),所以当前的大多数使用方式是通过watch得知变更,然后通过get重新获取数据,并不完全依赖于watch的变更event。

Etcd v3 的存储、whach和过期机制

enter image description here

Etcd v3 将watch和store拆开实现,我们先分析下store的实现。

Etcd v3 store 分为两部分,一部分是内存中的索引,kvindex,是基于google开源的一个golang的btree实现的,另外一部分是后端存储。按照它的设计,backend可以对接多种存储,当前使用的boltdb。boltdb是一个单机的支持事务的kv存储,Etcd 的事务是基于boltdb的事务实现的。Etcd 在boltdb中存储的key是reversion,value是 Etcd 自己的key-value组合,也就是说 Etcd 会在boltdb中把每个版本都保存下,从而实现了多版本机制。

举个例子:

用Etcdctl通过批量接口写入两条记录:

Etcdctl txn <<<' 
put key1 "v1" 
put key2 "v2" 

' 

再通过批量接口更新这两条记录:

Etcdctl txn <<<' 
put key1 "v12" 
put key2 "v22" 

' 

boltdb中其实有了4条数据:

rev={3 0}, key=key1, value="v1" 
rev={3 1}, key=key2, value="v2" 
rev={4 0}, key=key1, value="v12" 
rev={4 1}, key=key2, value="v22" 

reversion主要由两部分组成,第一部分main rev,每次事务进行加一,第二部分sub rev,同一个事务中的每次操作加一。如上示例,第一次操作的main rev是3,第二次是4。当然这种机制大家想到的第一个问题就是空间问题,所以 Etcd 提供了命令和设置选项来控制compact,同时支持put操作的参数来精确控制某个key的历史版本数。

了解了 Etcd 的磁盘存储,可以看出如果要从boltdb中查询数据,必须通过reversion,但客户端都是通过key来查询value,所以 Etcd 的内存kvindex保存的就是key和reversion之前的映射关系,用来加速查询。

然后我们再分析下watch机制的实现。Etcd v3 的watch机制支持watch某个固定的key,也支持watch一个范围(可以用于模拟目录的结构的watch),所以 watchGroup 包含两种watcher,一种是 key watchers,数据结构是每个key对应一组watcher,另外一种是 range watchers, 数据结构是一个 IntervalTree(不熟悉的参看文文末链接),方便通过区间查找到对应的watcher。

同时,每个 WatchableStore 包含两种 watcherGroup,一种是synced,一种是unsynced,前者表示该group的watcher数据都已经同步完毕,在等待新的变更,后者表示该group的watcher数据同步落后于当前最新变更,还在追赶。

当 Etcd 收到客户端的watch请求,如果请求携带了revision参数,则比较请求的revision和store当前的revision,如果大于当前revision,则放入synced组中,否则放入unsynced组。同时 Etcd 会启动一个后台的goroutine持续同步unsynced的watcher,然后将其迁移到synced组。也就是这种机制下,Etcd v3 支持从任意版本开始watch,没有v2的1000条历史event表限制的问题(当然这是指没有compact的情况下)。

另外我们前面提到的,Etcd v2在通知客户端时,如果网络不好或者客户端读取比较慢,发生了阻塞,则会直接关闭当前连接,客户端需要重新发起请求。Etcd v3为了解决这个问题,专门维护了一个推送时阻塞的watcher队列,在另外的goroutine里进行重试。

Etcd v3 对过期机制也做了改进,过期时间设置在lease上,然后key和lease关联。这样可以实现多个key关联同一个lease id,方便设置统一的过期时间,以及实现批量续约。

相比Etcd v2, Etcd v3的一些主要变化:

  1. 接口通过grpc提供rpc接口,放弃了v2的http接口。优势是长连接效率提升明显,缺点是使用不如以前方便,尤其对不方便维护长连接的场景。
  2. 废弃了原来的目录结构,变成了纯粹的kv,用户可以通过前缀匹配模式模拟目录。
  3. 内存中不再保存value,同样的内存可以支持存储更多的key。
  4. watch机制更稳定,基本上可以通过watch机制实现数据的完全同步。
  5. 提供了批量操作以及事务机制,用户可以通过批量事务请求来实现Etcd v2的CAS机制(批量事务支持if条件判断)。

Etcd,Zookeeper,Consul 比较

这三个产品是经常被人拿来做选型比较的。 Etcd 和 Zookeeper 提供的能力非常相似,都是通用的一致性元信息存储,都提供watch机制用于变更通知和分发,也都被分布式系统用来作为共享信息存储,在软件生态中所处的位置也几乎是一样的,可以互相替代的。二者除了实现细节,语言,一致性协议上的区别,最大的区别在周边生态圈。Zookeeper 是apache下的,用java写的,提供rpc接口,最早从hadoop项目中孵化出来,在分布式系统中得到广泛使用(hadoop, solr, kafka, mesos 等)。Etcd 是coreos公司旗下的开源产品,比较新,以其简单好用的rest接口以及活跃的社区俘获了一批用户,在新的一些集群中得到使用(比如kubernetes)。虽然v3为了性能也改成二进制rpc接口了,但其易用性上比 Zookeeper 还是好一些。 而 Consul 的目标则更为具体一些,Etcd 和 Zookeeper 提供的是分布式一致性存储能力,具体的业务场景需要用户自己实现,比如服务发现,比如配置变更。而Consul 则以服务发现和配置变更为主要目标,同时附带了kv存储。 在软件生态中,越抽象的组件适用范围越广,但同时对具体业务场景需求的满足上肯定有不足之处。

Etcd 的周边工具

  1. Confd 在分布式系统中,理想情况下是应用程序直接和 Etcd 这样的服务发现/配置中心交互,通过监听 Etcd 进行服务发现以及配置变更。但我们还有许多历史遗留的程序,服务发现以及配置大多都是通过变更配置文件进行的。Etcd 自己的定位是通用的kv存储,所以并没有像 Consul 那样提供实现配置变更的机制和工具,而 Confd 就是用来实现这个目标的工具。 Confd 通过watch机制监听 Etcd 的变更,然后将数据同步到自己的一个本地存储。用户可以通过配置定义自己关注那些key的变更,同时提供一个配置文件模板。Confd 一旦发现数据变更就使用最新数据渲染模板生成配置文件,如果新旧配置文件有变化,则进行替换,同时触发用户提供的reload脚本,让应用程序重新加载配置。 Confd 相当于实现了部分 Consul 的agent以及consul-template的功能,作者是kubernetes的Kelsey Hightower,但大神貌似很忙,没太多时间关注这个项目了,很久没有发布版本,我们着急用,所以fork了一份自己更新维护,主要增加了一些新的模板函数以及对metad后端的支持。源码地址:confd

  2. Metad 服务注册的实现模式一般分为两种,一种是调度系统代为注册,一种是应用程序自己注册。调度系统代为注册的情况下,应用程序启动后需要有一种机制让应用程序知道『我是谁』,然后发现自己所在的集群以及自己的配置。Metad 提供这样一种机制,客户端请求 Metad 的一个固定的接口 /self,由 Metad 告知应用程序其所属的元信息,简化了客户端的服务发现和配置变更逻辑。 Metad 通过保存一个ip到元信息路径的映射关系来做到这一点,当前后端支持Etcd v3,提供简单好用的 http rest 接口。 它会把 Etcd 的数据通过watch机制同步到本地内存中,相当于 Etcd 的一个代理。所以也可以把它当做Etcd 的代理来使用,适用于不方便使用 Etcd v3的rpc接口或者想降低 Etcd 压力的场景。 源码地址:metad

  3. Etcd 集群一键搭建脚本 。Etcd 官方那个一键搭建脚本有bug,我自己整理了一个脚本,通过docker的network功能,一键搭建一个本地的 Etcd 集群便于测试和试验,etcd集群一键搭建脚本

Etcd 使用注意事项

  1. Etcd cluster 初始化的问题 如果集群第一次初始化启动的时候,有一台节点未启动,通过v3的接口访问的时候,会报告Error: Etcdserver: not capable 错误。这是为兼容性考虑,集群启动时默认的API版本是2.3,只有当集群中的所有节点都加入了,确认所有节点都支持v3接口时,才提升集群版本到v3。这个只有第一次初始化集群的时候会遇到,如果集群已经初始化完毕,再挂掉节点,或者集群关闭重启(关闭重启的时候会从持久化数据中加载集群API版本),都不会有影响。

  2. Etcd 读请求的机制

    • v2 quorum=true 的时候,读取是通过raft进行的,通过cli请求,该参数默认为true。
    • v3 --consistency=“l” 的时候(默认)通过raft读取,否则读取本地数据。sdk 代码里则是通过是否打开:WithSerializable option 来控制。 一致性读取的情况下,每次读取也需要走一次raft协议,能保证一致性,但性能有损失,如果出现网络分区,集群的少数节点是不能提供一致性读取的。但如果不设置该参数,则是直接从本地的store里读取,这样就损失了一致性。使用的时候需要注意根据应用场景设置这个参数,在一致性和可用性之间进行取舍。
  3. Etcd 的compact机制 Etcd 默认不会自动compact,需要设置启动参数,或者通过命令进行compcat,如果变更频繁建议设置,否则会导致空间和内存的浪费。

脑洞时间

自动上次 Elasticsearch 的文章之后,给自己安排了一个作业,每次分析源码后需要提出几个发散思维的想法,开个脑洞。

  1. 并发代码调用分析追踪工具 当前IDE的代码调用分析追踪都是通过静态的代码分析来追踪方法调用链实现的,对阅读分析代码非常有用。但程序如果充分使用CSP或者Actor模型后,都通过消息进行调用,没有了明确的方法调用链,给阅读和理解代码带来了困难。如果语言或者IDE能支持这样的消息投递追踪分析,那应该非常有用。当然我这个只是脑洞,不考虑实现的可能性和复杂度。

  2. 实现一个通用的 multiple group raft库 当前 Etcd 的raft实现保证了多个节点数据之间的同步,但明显的一个问题就是扩充节点不能解决容量问题。要想解决容量问题,只能进行分片,但分片后如何使用raft同步数据?只能实现一个 multiple group raft,每个分片的多个副本组成一个虚拟的raft group,通过raft实现数据同步。当前实现了multiple group raft的有 TiKV 和 Cockroachdb,但尚未一个独立通用的。理论上来说,如果有了这套 multiple group raft,后面挂个持久化的kv就是一个分布式kv存储,挂个内存kv就是分布式缓存,挂个lucene就是分布式搜索引擎。当然这只是理论上,要真实现复杂度还是不小。

Etcd 的开源产品启示

Etcd在Zookeeper已经奠定江湖地位的情况下,硬是重新造了一个轮子,并且在生态圈中取得了一席之地。一方面可以看出是社区的形态在变化,沟通机制和对用户反馈的响应越来越重要,另外一方面也可以看出一个项目的易用的重要性有时候甚至高于稳定性和功能。新的算法,新的语言都会给重新制造轮子带来了机会。

这次分享就到这里,有问题可以在讨论中提出。个人公众号 jolestar-blog,博客地址:http://jolestar.com 欢迎关注。


相关链接:

  1. raft官网 有论文地址以及相关资料。
  2. raft动画演示 看了这个动画就懂raft了。
  3. etcd:从应用场景到实现原理的全方位解读 这篇文章对使用场景描述的比较全面。
  4. confd 我们修改版的confd仓库地址。
  5. metad 仓库地址。
  6. etcd集群一键搭建脚本
  7. 并发之痛 Thread,Goroutine,Actor 本人关于并发模型的一篇文章,有利于理解文章内提到的CSP模型。

Chat实录:《王渊命谈etcd如何“少踩坑”》


enter image description here

enter image description here